АНАЛИЗ СИСТЕМЫ АВТОНОМНОГО ЭНЕРГОСНАБЖЕНИЯ НА ОСНОВЕ СОЛНЕЧНОЙ ЭНЕРГИИ С РАЗЛИЧНЫМИ СИСТЕМАМИ АККУМУЛИРОВАНИЯ ЭНЕРГИИ

Счастливцев А.И., Мордынский А.В.

Объединенный институт высоких температур РАН

ВВЕДЕНИЕ

На регионы с нецентрализованным энергоснабжением приходится:

- 70% территории,
- 20 млн. человек населения
- 15% основных фондов

В России много мест где установка автономных систем энергоснабжения на основе солнечных энергоустановок может быть экономически целесообразна

ВВЕДЕНИЕ

Автономные системы энергоснабжения на основе солнечных энергоустановок требуют систем аккумулирования энергии с большой емкостью хранения для обеспечения гарантированного энергоснабжения в зимние временные периоды

ВВЕДЕНИЕ

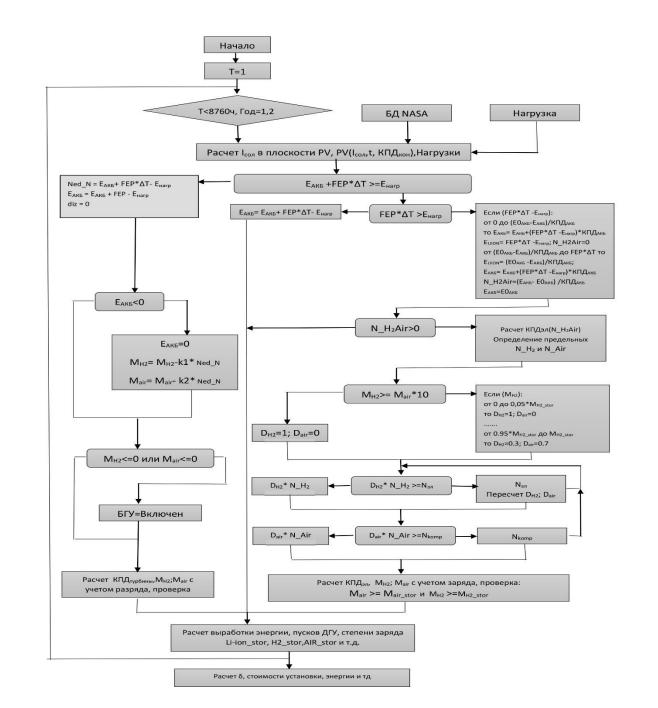
Параметр	Гидроаккумулиру ющие электростанции	Воздушно аккумулирующ ие электростанции	V-redox	Ni/Cd	Li-Ion	Маховики	Водородная система аккумулирова ния
Удельная стоимость установленной мощности CA, тыс. \$/кВт	1,1-1,9	0,7-1,6	0,4-2,2	0,125- 0,25	0,175- 0,9	0,4-0,9	2,0-3,0
Удельная стоимость системы хранения , \$/кВт·ч	9-15	5-180	150-650	600- 1100	500-900	400-1200	0,1-15
Суточные потери энергии, %	< 1	< 1	3-5	3-5	3-5	80-100	< 0,1
Коэффициент рекуперации	0,67-0,72	0,45-0,6	0,8-0,9	0,65-0,8	0,85-0,9	0,8-0,9	0,4-0,51
Pecypc	30 лет	15-20 лет	2000-3000 циклов	3000- 4000 циклов	1500- 3000 циклов	20-25 лет	15-20 лет

Одной из наиболее низкой стоимостью аккумулирования энергии обладают системы аккумулирования на основе водорода (менее 15 \$/кВт·ч)

Постановка задачи

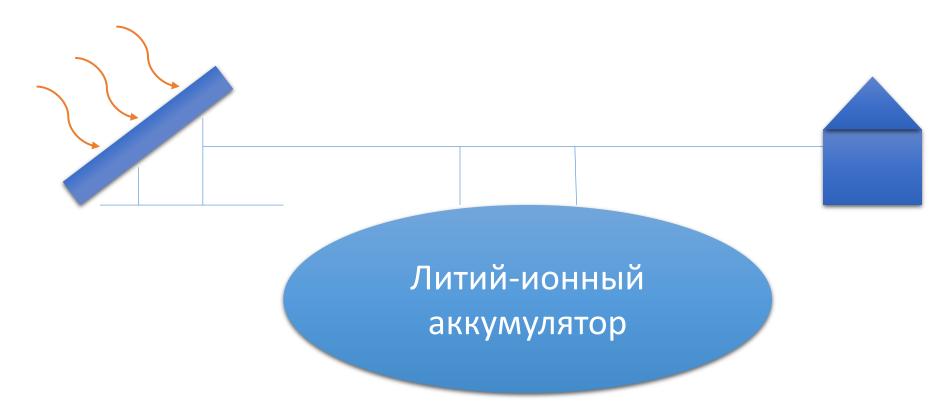
Рассмотрена **полностью автономная** система энергоснабжения на основе солнечной энергии со следующими системами аккумулирования энергии:

с литий-ионным аккумулятором;

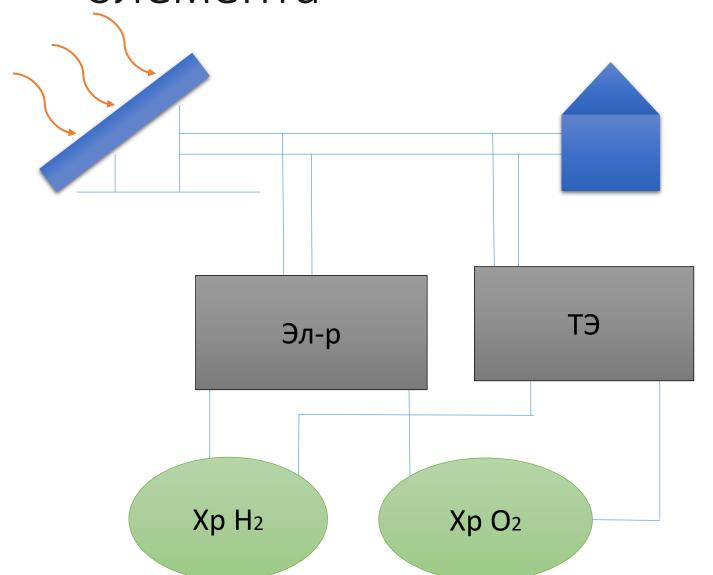

водородная система на основе топливного элемента;

водородно-воздушная система с газотурбинной установкой.

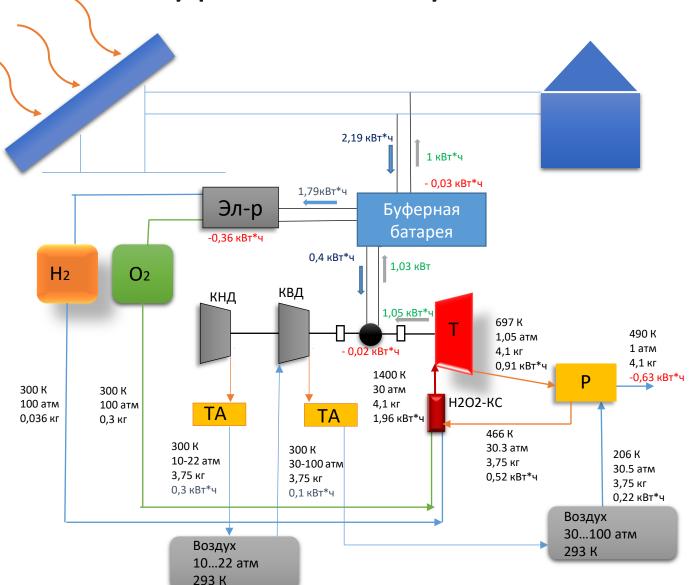
Параметры солнечного излучения


Исходные климатические данные для Майкопа, полученные на основе спутниковой базы данных NASA POWER/SSE6

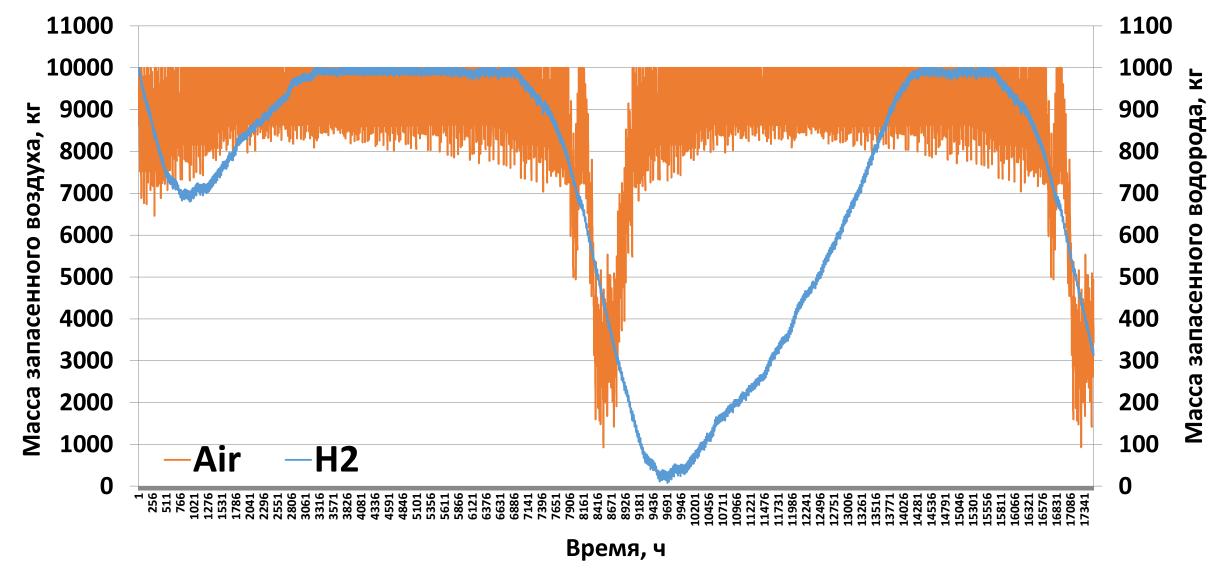
Исходные расчетные данные


Параметр	Значение		
Географическая локация	Майкоп		
Суммарная суточная нагрузка, кВт∙ч	1200		
Максимальная нагрузка от потребителя, кВт	100		
Стоимость системы хранения \$/кВт·ч Литий-ион Водород Воздух/Водород	1000 15 60		
Электролизер \$/кВт	1500		
Топливный элемент \$/кВт	5000		
Турбина \$/кВт	400		
Компрессор \$/кВт	250		

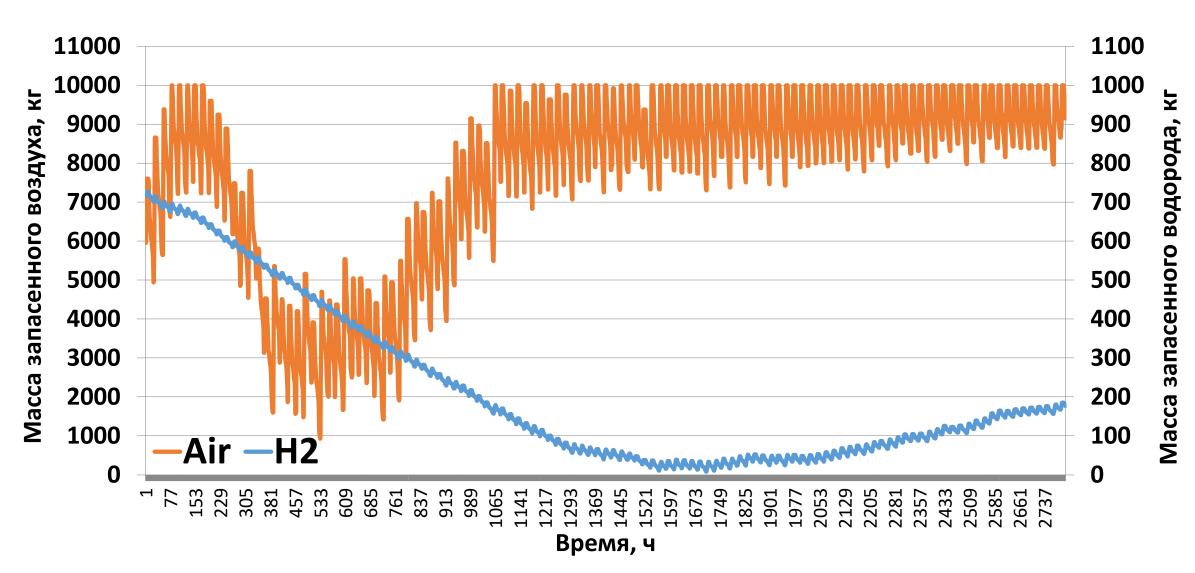
Система с литий-ионным аккумулятором


Стоимость энергии, вырабатываемой автономной системой энергоснабжения 13.5 Руб/кВтч

Водородная система на основе топливного элемента


Стоимость энергии, вырабатываемой автономной системой энергоснабжения 11.8 Руб/кВтч

Водородно-воздушная система с газотурбинной установкой



Стоимость энергии, вырабатываемой автономной системой энергоснабжения 9.3 Руб/кВтч

График зарядки водорода и воздуха

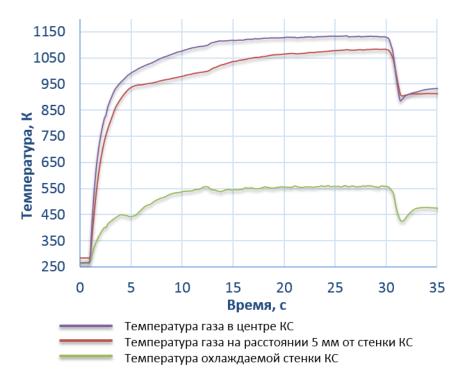


График зарядки водорода и воздуха

Испытания водородно-воздушной камеры сгорания

Проведены экспериментальные исследования по генерации пара в экспериментальном образце водородного парогенератора. Температура генерируемого пара составила 950...1180 К. Установлено, что при увеличении длины охлаждаемой вставки в 2 раза (с 35 до 70 мм), произошло снижение концентрации окислов азота с 38 до 14 мг/нм³, что существенно ниже требований, предъявляемым даже к перспективным камерам сгорания газотурбинных установок.

Заключение

- Разработана методика расчета и проведен расчет автономной системы энергоснабжения на основе солнечной энергии с различными системами аккумулирования энергии;
- Водородные системы аккумулирования энергии более эффективны для полностью автономных систем энергоснабжения на основе солнечной энергии, поскольку по таким показателям как удельная стоимость запасенного киловатт-часа и длительность хранения практически не имеют конкурентов;
- Минимальная стоимость энергии, вырабатываемой автономной системой энергоснабжения получилась с водородно-воздушной системой аккумулирования энергии.

СПАСИБО ЗА ВНИМАНИЕ

Contacts:

Head of Laboratory for Hydrogen

Energy Technologies

Researcher

Tel./Fax:

e-mail:

Home page:

V.I. Borzenko

A.I. Schastlivtsev

+7 (495) 362-53-11

+7 (495) 362-26-36

h2lab@mail.ru

h2lab.ru