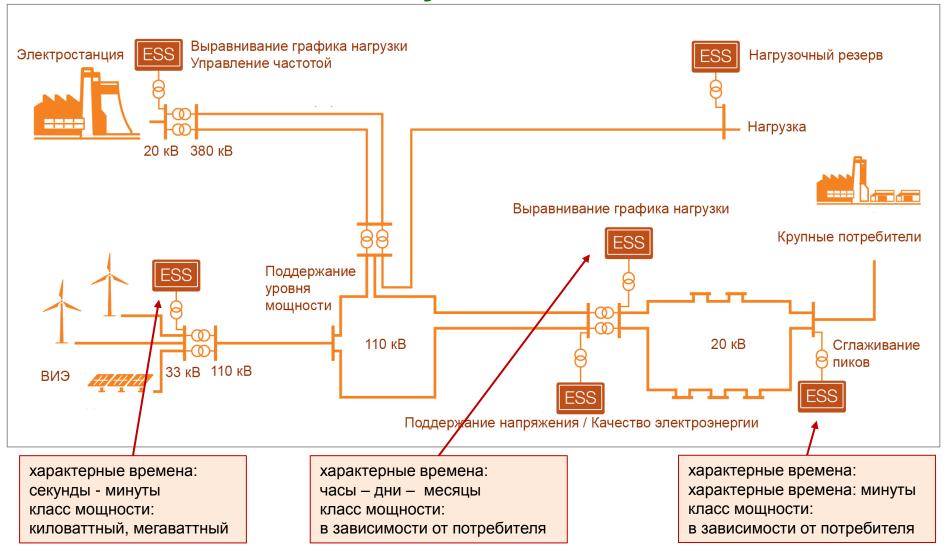
Международный Конгресс «Возобновляемая энергетика XXI век: энергетическая и экономическая эффективность» 27—28 октября 2015, Москва

Водородные технологии аккумулирования энергии

Борзенко Василий Игоревич **Дуников Дмитрий Олегович**Лаборатория водородных энергетических технологий

ОИВТ РАН



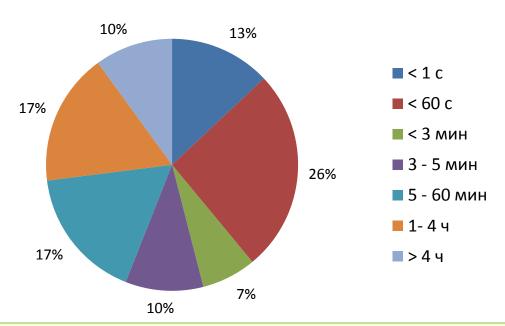
Основные направления использования систем хранения электроэнергии

- **Качество** степень соответствия параметров электрической энергии их установленным значениям. Запасенная энергия используется в течение секунд или меньшего времени для поддержания параметров сети.
- Бесперебойное питание поддержание непрерывности питания приемников в случае нарушения питающей сети переменного тока. Запасенная энергия используется в течение секунд или минут на время переключения с одного источника питания на другой.
- Регулирование потребления энергии согласование графиков производства и потребления электроэнергии. Например, выравнивание графика нагрузки. Запасенная энергия может использоваться в течение многих часов.

Хранение энергии – ключ к созданию интеллектуальных сетей

EES - Energy Storage System

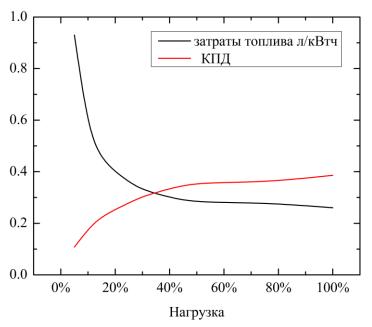
ั Исто́чник: http://www05.abb.com/global/scot/scot221.nsf/veritydisplay/59a2be960fdb777a48257a680045c04a/\$file/ABB%20Energy%20Storage_Nov2012.pdf



Заинтересованность в системах хранения электроэнергии

Анализ проведенный в США показал, что около двух третей различных учреждений испытывают перебои с электроэнергией в течение года, в среднем 3-5 раз в году.

Большинство из респондентов имели не только основную систему бесперебойного энергоснабжения, но дублирующую. Основными типами являются дизельные либо газовые генераторы (85%) или аккумуляторные USP системы (75%), доля альтернативных источников, включая возобновляемые источники энергии и топливные элементы составила 14%.


Длительность перебоев

Дизельные генераторы малоэффективны и экологически опасны

КПД дизель-генераторов малой мощности (2...5 кВт) составляет 15...25%. Более мощные машины имеют КПД до 35%. Эффективность их работы существенно снижается в переменных режимах.

Затраты топлива и КПД дизельного генератора Isuzu 4HK1 tier 3, 2007 мощностью 100 кВт, работающего на 1800 об/мин

В настоящее время ниша автономного энергоснабжения занята неэффективными и экологически опасными системами на дизельгенераторах, нуждающихся в дорогом привозном топливе

Методы хранения электрической энергии

- Химические источники тока (аккумуляторы свинцовые, Li-ионные и прочие);
- Маховики (низко- и высокоскоростные). Используются в основном для кратковременного хранения энергии в двигательных системах (например, автомобилях);
- Суперконденсаторы;
- Энергия сжатого воздуха (ПАЭС). Воздух запасается в крупных резервуарах, кавернах и т.д.;
- Сверхпроводящие магнитные системы (СПМС), используется энергия тока, циркулирующего в сверхпроводнике;
- Гидроаккумулирующие системы (ГАЭС);
- Хранение энергии в водороде.

Применимость АКБ в системах хранения энергии

$$E/P = \frac{Длительность разряда (ч)}{Степень разряда}$$

Категория	Продолжи- тельность	Е/Р кВт ч/кВт	Подходящая технология (Е/Р)
Краткосрочная	1 c	0.0007	Нет
	60 c	0.04	Li-ионные АКБ в приоритете мощности (0.05)
Непродолжительная	< 1 ч	<1	Свинцовые АКБ в приоритете энергоемкости (0.5)
			Li-ионные АКБ в приоритете энергоемкости (0.4)
	>14	>1	Na-S (6), V-РБ (>1.5)
Длительная	6 ч	8	Na-S (6), V-РБ (>1.5)
	48 ч	64	нет

Leadbetter J., Swan L.G. Selection of battery technology to support grid-integrated renewable electricity // Journal of Power Sources. 2012. T. 216. . — C. 376-386.

Понятие водородной энергетики

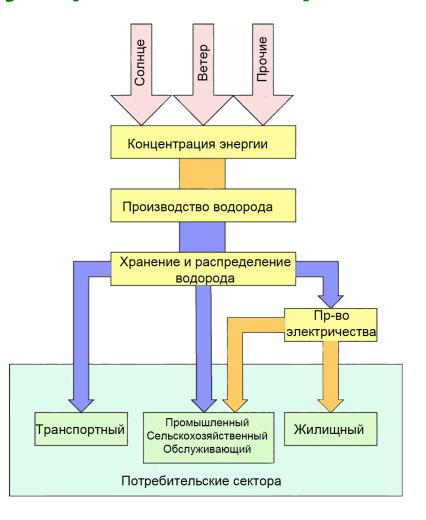
Водородная энергетика — совокупность технологий производства, транспортировки, аккумулирования и использования универсального вторичного энергоносителя — водорода.

Водород не является первичным энергоресурсом, как нефть, уголь, ядерное топливо, ВИЭ и т.д.

В концепции водородной энергетики водород дополняет собой важнейший вторичный энергоноситель – электроэнергию.

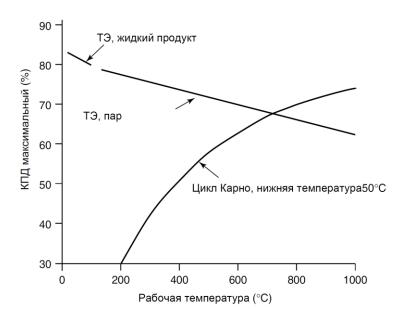
Водород и электроэнергия:

- могут быть конвертированы друг в друга с высоким КПД
- обеспечивают малое количество вредных выбросов
- водород проще хранить и транспортировать
- электроэнергию проще применять на практике

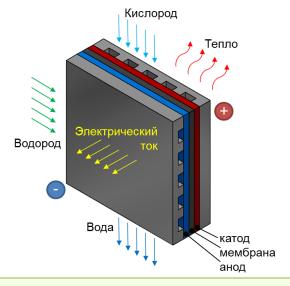


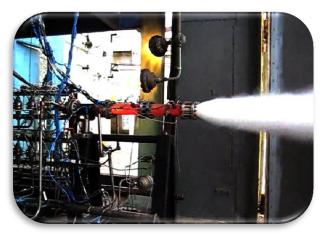
Водородное аккумулирование энергии

ВИЭ отличаются низкими плотностями и существенной неравномерностью потоков энергии, испытывающих значительные суточные и сезонные колебания.

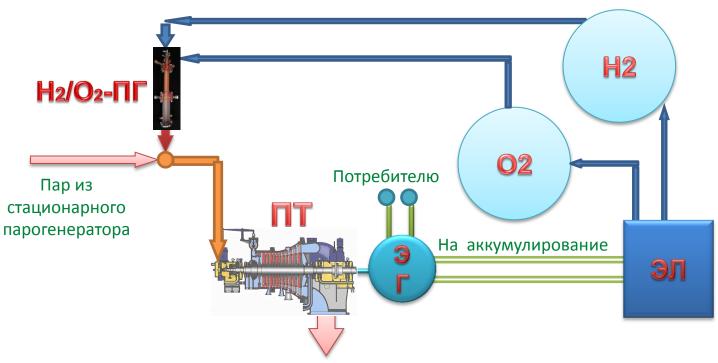

Задачу согласования графиков производства и потребления электроэнергии невозможно решить без разработки систем хранения энергии.

Применение аккумуляторных батарей ограничено из-за их малого ресурса, необходимости регулярного обслуживания, утечки заряда, содержания загрязняющих веществ и слабой переносимости низких температур.


Водородные технологии способны обеспечить долговременное хранение энергии без потерь


Водородные энергоустановки: что выгоднее?

Киловаттный класс: топливные элементы


Мегаваттный класс: Тепловые машины (водородо-кислородные Парогенераторы)

Большая энергетика: водородо-кислородные парогенераторы

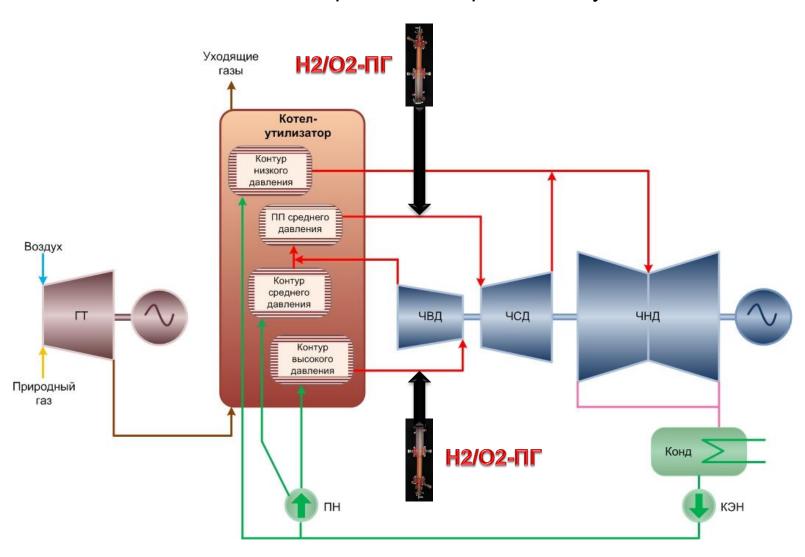
дополнительные аккумулирующие надстройки для производства пиковых мощностей

ОБОЗНАЧЕНИЯ:

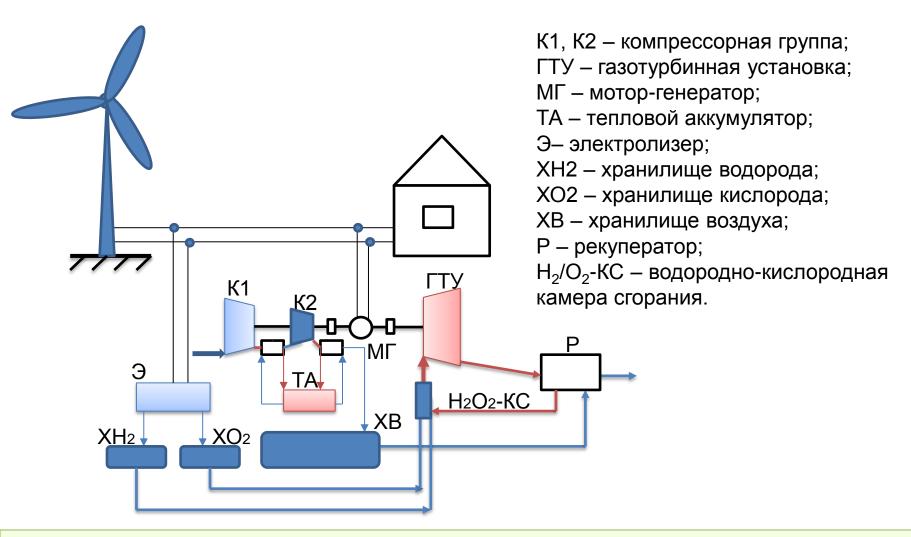
H2/O2-ПГ — водородно-кислородный парогенератор

ПТ – паровая турбина

ЭГ – электрогенератор


ЭЛ – электролизер

О2, Н2 – ресиверы кислорода и водорода

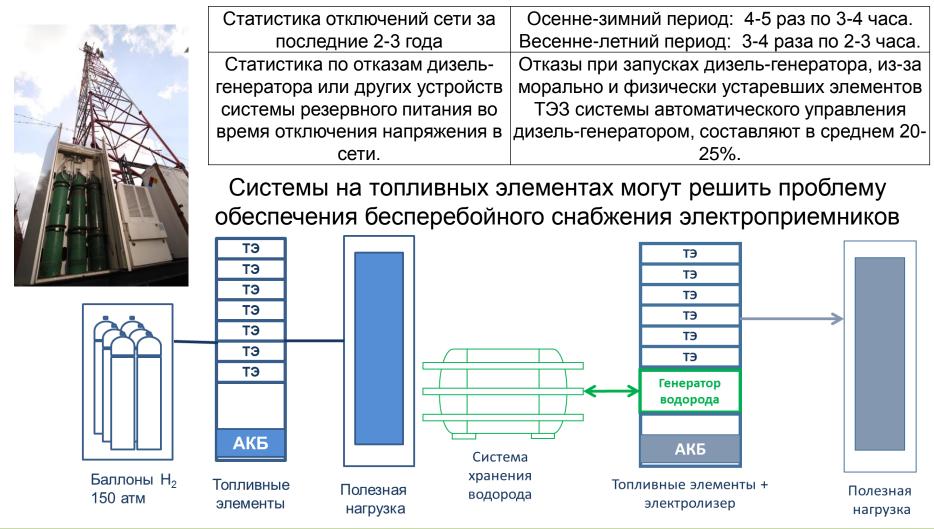

Водородо-кислородные парогенераторы:

повышение маневренности парогазовых установок

Водородо-кислородные парогенераторы для ВИЭ

водородные системы аккумулирования и распределения электроэнергии

Автономная водородная паротурбинная энергоустановка

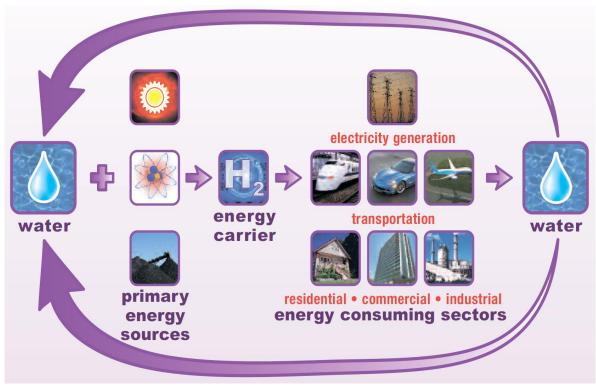


Технические характеристики:

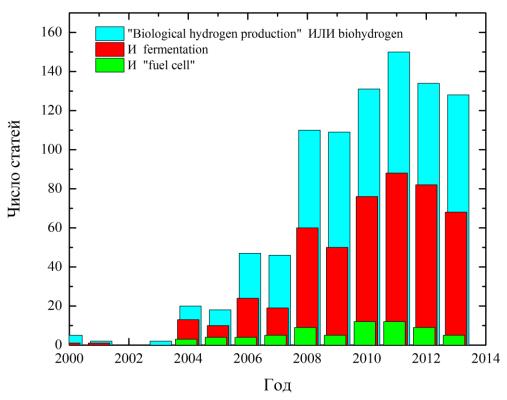
Параметр	Значение
$ m Pacxoд\ H_2\ ,\ \ \kappa r/c$	0,17
Расход O_2 , кг/с	1,2
Давление пара, МПа	6
Температура пара, К	Up to 1200
Тип турбины	одноступенча тая осевая
КПД, %	1821
Время запуска, с	911
Удельная стоимость, \$/кВт	менее 300
Скорость вращения ротора, мин ⁻¹	19480
Мощность турбины, кВт	1900

Киловаттный класс: резервное электроснабжение в телекоммуникационной отрасли

АТС, г. Звенигород, Московская область



Водородная энергетика: безопасный путь в будущее



WORLD HYDROGEN ENERGY CONFERENCE June 13th to 16th 2016 21-я Всемирная конференция по водородной энергетике 13-16 июня 2016 Сарагоса, Испания

http://www.whec2016.com/

Биоводородные технологии

Число статей, индексированных в Scopus, по теме: «Биологическое производство водорода» (Biological hydrogen production) или «биоводород» (biohydrogen), а также их доли посвященные ферментации (fermentation) и интеграции с топливными элементами (fuel cell)

7th International Meeting "Photosynthesis Research for Sustainability -2016"

in honor of **Natan Nelson** and **T. Nejat Veziroglu**June 19-26, 2016

Pushchino, Russia
7-я конференция «Исследования фотосинтеза для устойчивого развития
– 2016»,

19-26 июня, Пущино, Россия

http://photosynthesis2016.cellreg.org/

